
Alonzo Church (1903 –1995)

λ-Calculus Cheat Sheet
Overview of the Untyped Lambda Calculus

Definitions

 • V is the set of variables
 • Λ is the set of lambda terms

The λ-terms are defined as:

 x ∈ V ⇒ x ∈ Λ

If x is a variable, then x is a lambda term.

 M, N ∈ Λ ⇒ (M N) ∈ Λ

If M and N are lambda terms, then (M N) is a lambda term,
called an application. The function M is applied to the input N.

 M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ

If M is a lambda term, and x is a variable, then λx.M is a lambda term;
an abstraction of the anonymous function x → M. A lambda abstraction
binds the free variable x in M.

To summarize, a λ-term can be:

 • a variable, e.g., x;
 • an application, e.g., M N; or
 • a function abstraction, e.g., λx.M.

Nothing else is a λ-term.

Free variables

The free variables (FV) of a λ-term is defined, inductively, as:

 1. FV(v) = {v}
 2. FV(M N) = FV(M) U FV(N)
 3. FV(λx.M) = FV(M) − {x}

M is a closed λ-term (also known as combinator) if FV(M) = ∅.
The set of closed λ-terms is denoted by Λo.

Alpha-convertibility

Terms that differ only by alpha-conversion (renaming of
bound variables) are called α-equivalent:

 λz.z =α λx.x

Beta-reduction

β-reduction formalizes the notion of a computation
in the rule,

 (λx.M)N →β M[x := N]

where x := N denotes the substitution of any free
occurrence of x in M with the value N.

M → N

M —» N

Eta-convertibility

η-conversion expresses the idea of extensionality:

 (λx.M)x =η M if x ∈/ FV(M)

Normal Form

A lambda expression is in normal form if no sub-
expression can be reduced. A term is said to have a
normal form if it can be reduced to a term in normal form.

Head Normal Form

An expression is in head normal form if the outermost
application cannot be reduced, i.e., if there is no beta-
redex in head position.

I

K

K∗

S

≡ λx.x

≡ λxy.x

≡ λxy.y

≡ λxyz.xz(yz)

Standard combinators

Substitution

The capture-avoiding substitution rules are defined as follows:

Note: M[x := N] is written M[N / x] in some books.

 • For a variable, y;

 • For an application, (M N);

 • For an abstraction, λy.M;

y[x := N] ≡
N if x = y

y if x ≠ y

{

(M N) [x := P] ≡ M[x := P] N[x := P]

(λy.M)[x := N] ≡
λy.M if x = y

λy.(M[x := N]) if x ≠ y and y ∈/ FV(N)

{

Syntax

 • Application associates to the left:

 M P Q means ((M P) Q).

 • λ-abstractions extend as far to the right as possible:

 λx.M P Q means λx.(M P Q).

http://thesyntacticsugar.blogspot.com

≡ λnfx.f(nfx)

A+

A∗

Aexp

≡ λxypq.xp(ypq)
≡ λxyz.x(yz)
≡ λxy.yx

Arithmetic

Addition
Multiplication
Exponentiation

Successor S+

M reduces to N in exactly one step.

M reduces to N in zero or more steps.

…

…

Fixed Point Theorem

 ∀F ∃X FX = X where F, X ∈ Λ

For all λ-terms F, there exists a λ-term X such that λ Ͱ FX = X.

Church numerals

c0 ≡ λf.λx.x
c1 ≡ λf.λx.f x
c2 ≡ λf.λx.f(f x)
c3 ≡ λf.λx.f(f (f x))

cn ≡ λf.λx.f n(x)

Church-Rosser Theorem

If a term M can be reduced to both N and P,
then there must exist a term Q (possibly
equal to N or P) to which both N and P
can be reduced.

M

N P

Q

Is-Zero Predicate

Is zero ≡ λn.n (λx.False) True

Shorthand notation

 • λxyz.x is shorthand for λx.λy.λz.x.
 • Outermost parentheses are usually omitted.
 • λx(M) is λx.M.

Boolean logic

True
False

And
Or
Not
If-then-else

≡ λxy.x
≡ λxy.y (equal to numeral 0)

≡ λpq.pqp
≡ λpq.ppq
≡ λpab.pba
≡ λpab.pab

T
F

Freshness condition

Alpha-conversion is sometimes necessary to avoid changing
the meaning of functions (name clashes). For example:

 (λx.y)[y := x] ≡ λx.(y[y := x]) ≡ λx.x ⇒ λx.y ≡ λx.x (!!)

This substitution does not meet the condition;

(λy.M)[x := N] requires that y ∈/ FV(N) (y is fresh for N).

After α-conversion of λx.y to λz.y, we get:

 (λz.y)[y := x] ≡ λz.(y[y := x]) ≡ λz.x

Indefinite value

The indefinite value
is denoted

 Ω ≡ ωω

where ω ≡ λx.xx.

Y-Combinator

The combinator Y provides
a way to represent recursion:

Y ≡ λf.(λx.f(xx))(λx.f(xx))

<term> ::= <variable>
| (<term> <term>)
| (λ <variable> . <term>)

Specification in Backus-Naur Form

