λ-Calculus Cheat Sheet

Overview of the Untyped Lambda Calculus

http://thesyntacticsugar.blogspot.com

Definitions

- V is the set of variables
- Λ is the set of lambda terms

The λ -terms are defined as:

 $x \in V \Rightarrow x \in \Lambda$

If x is a variable, then x is a lambda term.

 $M, N \in \Lambda \Rightarrow (M N) \in \Lambda$

If M and N are lambda terms, then (M N) is a lambda term, called an application. The function M is applied to the input N.

 $M \in \Lambda, x \in V \Rightarrow (\lambda x.M) \in \Lambda$

If M is a lambda term, and x is a variable, then $\lambda x.M$ is a lambda term; an abstraction of the anonymous function $x \rightarrow M$. A lambda abstraction binds the free variable x in M.

To summarize, a λ -term can be:

- a variable, e.g., x;
- an **application**, e.g., M N; or
- a function **abstraction**, e.g., λx.M.

Nothing else is a λ -term.

Alonzo Church (1903-1995)

Specification in Backus-Naur Form

<term> ::= <variable> | (<term>) $|(\lambda < variable > . < term >)$

Syntax

· Application associates to the left:

M P Q means ((M P) Q).

• λ-abstractions extend as far to the right as possible:

 $\lambda x.M P Q$ means $\lambda x.(M P Q)$.

Shorthand notation

- $\lambda xyz.x$ is shorthand for $\lambda x.\lambda y.\lambda z.x$.
- · Outermost parentheses are usually omitted.
- λx(M) is λx.M.

Free variables

1

S

The free variables (FV) of a λ -term is defined, inductively, as:

1. FV(v) = {v} 2. FV(M N) = FV(M) U FV(N)3. $FV(\lambda x.M) = FV(M) - \{x\}$

M is a closed λ -term (also known as *combinator*) if FV(M) = \emptyset . The set of closed λ -terms is denoted by Λ° .

Standard combinators	Y-Combinator
$I \equiv \lambda x. x$ $K \equiv \lambda x y. x$	The combinator Y provides a way to represent recursion:
$\mathbf{K}_{*} \equiv \lambda xy.y$ $\mathbf{S} \equiv \lambda xyz.xz(yz)$	$\mathbf{Y} \equiv \lambda f_{\cdot}(\lambda x.f(xx))(\lambda x.f(xx))$

Alpha-convertibility

Terms that differ only by alpha-conversion (renaming of bound variables) are called *α-equivalent*:

 $\lambda z.z =_{\alpha} \lambda x.x$

Beta-reduction

β-reduction formalizes the notion of a computation in the rule.

 $(\lambda x.M)N \rightarrow_{\beta} M[x := N]$

where x := N denotes the substitution of any free occurrence of x in M with the value N.

 $M \rightarrow N$... M reduces to N in exactly one step.

M —» N ... M reduces to N in zero or more steps.

Eta-convertibility

n-conversion expresses the idea of extensionality:

 $(\lambda x.M)x =_n M$ if x ∉ FV(M)

Normal Form

A lambda expression is in normal form if no subexpression can be reduced. A term is said to have a normal form if it can be reduced to a term in normal form.

Head Normal Form

An expression is in head normal form if the outermost application cannot be reduced, i.e., if there is no betaredex in head position.

Boolean logic			A
True	т	≡ λxy.x	
False	F	$\equiv \lambda xy.y$ (equal to numeral 0)	For a
And		≡ λρα ραρ	
Or		= λρα.ρρα	Chi
Not		≡ λpab.pba	Cill
lf-then-else		≡ λpab.pab	c ₀ ≡ .
			c ₁ ≡ .
			c ₂ ≡ .
Arithmetic			c ₃ ≡ .
Addition	A₊	$\equiv \lambda x y p q. x p (y p q)$	o =
Multiplication	A _*	$\equiv \lambda x y z . x (y z)$	C _n =
Exponentiation	A _{exp}	≡ λxy.yx	
			Inde
Successor	S⁺	≡ λnfx.f(nfx)	
			Thei
			is de
Is-Zero Predicate			
ls zero		≡ λn.n (λx.False) True	Ω

indefinite value enoted

Substitution

The capture-avoiding substitution rules are defined as follows:

· For a variable, y;

$$y[x := N] \equiv \begin{cases} N & \text{if } x = y \\ y & \text{if } x \neq y \end{cases}$$

• For an application, (M N);

$$(M N)[x := P] \equiv M[x := P] N[x := P]$$

For an abstraction, λy.M;

$$(\lambda y.M)[x := N] \equiv \begin{cases} \lambda y.M & \text{if } x = y \\ \lambda y.(M[x := N]) & \text{if } x \neq y \text{ and } y \notin FV(N) \end{cases}$$

Note: M[x := N] is written M[N / x] in some books.

Freshness condition

Alpha-conversion is sometimes necessary to avoid changing the meaning of functions (name clashes). For example:

 $(\lambda x.y)[y := x] \equiv \lambda x.(y[y := x]) \equiv \lambda x.x \Rightarrow \lambda x.y \equiv \lambda x.x (!!)$

This substitution does not meet the condition;

 $(\lambda y.M)[x := N]$ requires that $y \notin FV(N)$ (y is *fresh* for N).

After α -conversion of $\lambda x.y$ to $\lambda z.y$, we get:

 $(\lambda z.y)[y := x] \equiv \lambda z.(y[y := x]) \equiv \lambda z.x$

Fixed Point Theorem

∀F ∃X FX = X where F. $X \in \Lambda$

all λ -terms F, there exists a λ -term X such that $\lambda \vdash FX = X$.

urch numerals

λf.λx.x $\lambda f.\lambda x.f x$ $\lambda f.\lambda x.f(f x)$ $\lambda f.\lambda x.f(f(f x))$

 $\lambda f.\lambda x.f^{n}(x)$

efinite value

≡ ωω

where $\omega \equiv \lambda x.xx$.

Church-Rosser Theorem

If a term M can be reduced to both N and P, then there must exist a term Q (possibly equal to N or P) to which both N and P can be reduced.

