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λ-Calculus Cheat Sheet
Overview of the Untyped Lambda Calculus

Definitions

  •  V is the set of variables
  •  Λ is the set of lambda terms

The λ-terms are defined as:

     x ∈ V ⇒ x ∈ Λ

If x is a variable, then x is a lambda term.

     M, N ∈ Λ ⇒ (M N) ∈ Λ

If M and N are lambda terms, then (M N) is a lambda term, 
called an application. The function M is applied to the input N.

     M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ

If M is a lambda term, and x is a variable, then λx.M is a lambda term; 
an abstraction of the anonymous function x → M. A lambda abstraction 
binds the free variable x in M.

To summarize, a λ-term can be:

    •  a variable, e.g., x;
    •  an application, e.g., M N; or
    •  a function abstraction, e.g., λx.M.

Nothing else is a λ-term.

Free variables

The free variables (FV) of a λ-term is defined, inductively, as:

     1. FV(v) = {v}
     2. FV(M N) = FV(M) U FV(N)
     3. FV(λx.M) = FV(M) − {x}

M is a closed λ-term (also known as combinator) if FV(M) = ∅. 
The set of closed λ-terms is denoted by Λo.

Alpha-convertibility

Terms that differ only by alpha-conversion (renaming of 
bound variables) are called α-equivalent:

     λz.z =α λx.x

Beta-reduction

β-reduction formalizes the notion of a computation 
in the rule,

     (λx.M)N →β M[x := N]

where x := N denotes the substitution of any free 
occurrence of x in M with the value N.

M → N    

M —» N   

Eta-convertibility

η-conversion expresses the idea of extensionality:

     (λx.M)x =η M         if x ∈/  FV(M)

Normal Form

A lambda expression is in normal form if no sub-
expression can be reduced. A term is said to have a 
normal form if it can be reduced to a term in normal form.

Head Normal Form

An expression is in head normal form if the outermost 
application cannot be reduced, i.e., if there is no beta-
redex in head position.
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≡  λx.x

≡  λxy.x

≡  λxy.y

≡  λxyz.xz(yz)

Standard combinators

Substitution

The capture-avoiding substitution rules are defined as follows:

Note: M[x := N] is written M[N / x] in some books.

  •  For a variable, y;

  •  For an application, (M N);

  •  For an abstraction, λy.M;

y[x := N]  ≡
N       if x = y

y       if x ≠ y

{

(M N) [x := P]   ≡   M[x := P] N[x := P]

(λy.M)[x := N] ≡
λy.M       if x = y

λy.(M[x := N])      if x ≠ y and y ∈/  FV(N)

{

Syntax

  •  Application associates to the left:

            M P Q means ((M P) Q).

  •  λ-abstractions extend as far to the right as possible: 

            λx.M P Q means λx.(M P Q).

http://thesyntacticsugar.blogspot.com

≡ λnfx.f(nfx)

A+ 

A∗ 

Aexp 

≡ λxypq.xp(ypq)
≡ λxyz.x(yz)
≡ λxy.yx

Arithmetic

Addition
Multiplication
Exponentiation

Successor S+

M reduces to N in exactly one step.

M reduces to N in zero or more steps.

…

…

Fixed Point Theorem

     ∀F ∃X FX = X                    where F, X ∈ Λ

For all λ-terms F, there exists a λ-term X such that λ Ͱ FX = X.

Church numerals

c0 ≡ λf.λx.x
c1 ≡ λf.λx.f x
c2 ≡ λf.λx.f(f x)
c3 ≡ λf.λx.f(f (f x))

cn ≡ λf.λx.f n(x)

Church-Rosser Theorem

If a term M can be reduced to both N and P, 
then there must exist a term Q (possibly 
equal to N or P) to which both N and P 
can be reduced.

M

N P
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Is-Zero Predicate

Is zero ≡ λn.n (λx.False) True

Shorthand notation

  •  λxyz.x is shorthand for λx.λy.λz.x.
  •  Outermost parentheses are usually omitted. 
  •  λx(M) is λx.M.

Boolean logic

True
False

And
Or
Not
If-then-else

≡ λxy.x
≡ λxy.y   (equal to numeral 0)

≡ λpq.pqp
≡ λpq.ppq
≡ λpab.pba
≡ λpab.pab 

T
F

Freshness condition

Alpha-conversion is sometimes necessary to avoid changing
the meaning of functions (name clashes). For example: 

     (λx.y)[y := x]  ≡  λx.(y[y := x])  ≡  λx.x   ⇒   λx.y ≡ λx.x (!!)

This substitution does not meet the condition; 

(λy.M)[x := N] requires that y ∈/  FV(N) (y is fresh for N).

After α-conversion of λx.y to λz.y, we get:

     (λz.y)[y := x]  ≡  λz.(y[y := x])  ≡  λz.x

Indefinite value

The indefinite value
is denoted

     Ω ≡ ωω

where ω ≡ λx.xx.        

Y-Combinator

The combinator Y provides
a way to represent recursion:

Y ≡ λf.(λx.f(xx))(λx.f(xx))

<term>  ::=   <variable>
| ( <term> <term> )
| ( λ <variable> . <term> )

Specification in Backus-Naur Form


