A-Calculus Cheat Sheet

Overview of the Untyped Lambda Ca

Definitions

» Vis the set of variables
* Ais the set of lambda terms

The A-terms are defined as:
xeEV=2xeA

If x is a variable, then x is a lambda term.
M,NEA=(MN)EA

If M and N are lambda terms, then (M N) is a lambda term,
called an application. The function M is applied to the input N.

MEA XxEV= (M) EA

If M is a lambda term, and x is a variable, then Ax.M is a lambda term;
an abstraction of the anonymous function x — M. A lambda abstraction

binds the free variable x in M.
To summarize, a A-term can be:
* avariable, e.g., X;
* an application, e.g.,, M N; or

« afunction abstraction, e.g., Ax.M.

Nothing else is a A-term.

Iculus

Alonzo Church (1903 -1995)

Specification in Backus-Naur Form

<term> := <variable>
| (<term> <term>)
| (A <variable> . <term>)

http://thesyntacticsugar.blogspot.com

Syntax

* Application associates to the left:
M P Q means ((M P) Q).
+ A-abstractions extend as far to the right as possible:

A.M P Q means Ax.(M P Q).

Shorthand notation

* Axyz.x is shorthand for AX.Ay.Az.x.
» Outermost parentheses are usually omitted.
o Ax(M) is Ax.M.

Free variables
The free variables (FV) of a A-term is defined, inductively, as:
1. FV(v) ={v}

2. FV(M N) = FV(M) U FV(N)
3. FV(Ax.M) = FV(M) - {x}

M is a closed A-term (also known as combinator) if FV(M) = ©.
The set of closed A-terms is denoted by A°.

Standard combinators Y-Combinator

The combinator Y provides

| = AX.X .

K = Ayx a way to represent recursion:
Ky = Myy Y = M. (A F(xx)) (A f(xX))

S = Ayz.xz(yz)

Alpha-convertibility

Terms that differ only by alpha-conversion (renaming of
bound variables) are called a-equivalent:

Az.z =4 AX.X

Beta-reduction

B-reduction formalizes the notion of a computation
in the rule,

(MM)N —g M[x := N]

where x := N denotes the substitution of any free
occurrence of x in M with the value N.

M — N ... Mreduces to N in exactly one step.

M—» N ... Mreduces to N in zero or more steps.

Eta-convertibility

n-conversion expresses the idea of extensionality:

(AM)x =, M if x € FV(M)
Normal Form

A lambda expression is in normal form if no sub-
expression can be reduced. A term is said to have a

normal form if it can be reduced to a term in normal form.

Head Normal Form

An expression is in head normal form if the outermost
application cannot be reduced, i.e., if there is no beta-
redex in head position.

Boolean logic

True T =AxyX

False F = Axy.y (equal to numeral 0)
And = Apq.pgp

Or = Apq.ppq

Not = Apab.pba
If-then-else = Apab.pab
Arithmetic

Addition A, = Axypg.xp(ypq)
Multiplication A, = Ayz.x(yz)
Exponentiation Acp = AXy.yx
Successor S* = Anfx.f(nfx)

Is-Zero Predicate

Is zero = An.n (Ax.False) True

Substitution

The capture-avoiding substitution rules are defined as follows:

For a variable, y;

N ifx=y
yx:=N] =
y if X #y

For an application, (M N);

(MN)[x:=P] = MI[x:=P]N[x:=P]

For an abstraction, Ay.M;

Ay.M ifx=y
(Ay.M)[x:=N] =
A.(M[x:=N]) ifx#yandy & FV(N)

Note: M[x := N] is written M[N / x] in some books.

Freshness condition

Alpha-conversion is sometimes necessary to avoid changing
the meaning of functions (name clashes). For example:

MYy :=x] = MX(Y[y:=x]) = Axx = Axy=Axx ()

This substitution does not meet the condition;
(Ay.M)[x := N] requires that y & FV(N) (y is fresh for N).

After a-conversion of Ax.y to Az.y, we get:

(Azy)ly :=x] = Az(yly :=x]) = Azx

Fixed Point Theorem

VF IXFX=X where F, X € A

For all A-terms F, there exists a A-term X such that A F FX = X.

Church numerals Church-Rosser Theorem

Co = MLAX.X

¢y = MAXfx

¢, = MAXA(f x)
c;3 = M.AXA(f (f x))

If a term M can be reduced to both N and P,
then there must exist a term Q (possibly
equal to N or P) to which both N and P

can be reduced.

C, = MAX(x) M
[J

Indefinite value

The indefinite value N e e P
is denoted

Q= ww

where w = Ax.xx.

